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ABSTRACT 

The progress of science increasingly relies on machine learning (ML) and machines work 

alongside humans in various domains of science. This study investigates the team structure of 

ML-related projects and analyzes the contribution of ML to scientific knowledge production 

under different team structure, drawing on bibliometric analyses of 25,000 scientific 

publications in various disciplines. Our regression analyses suggest that (1) interdisciplinary 

collaboration between domain scientists and computer scientists as well as the engagement of 

interdisciplinary individuals who have expertise in both domain and computer sciences are 

common in ML-related projects; (2) the engagement of interdisciplinary individuals seem more 

important in achieving high impact and novel discoveries, especially when a project employs 

computational and domain approaches interdependently; and (3) the contribution of ML and its 

implication to team structure depend on the depth of ML. 
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INTRODUCTION 

Scientific knowledge shapes the foundation of the modern society, contributing to economic, 

social, and technological progress (Nelson, 2004; Stephan, 1996). The progress of science relies 

on various technical bases such as experimental techniques (Stephan, 2012: Ch.5). Among 

others, computational techniques play a crucial role in various parts of scientific research (Ding 

et al., 2010; Langley, 2000), and their role has been becoming more fundamental especially 

with the advancement of artificial intelligence, or more specifically machine learning (ML) 

(Cockburn et al., 2019). 

Increasing examples have been reported in various domains, in which machines work alongside 

humans to push forward the progress of science (de Cock Buning 2017). For example, in life 

sciences, protein-protein interactions are predicted to understand disease mechanisms (Zeng et 

al., 2017); in chemistry, optimal chemical reaction paths are predicted (Service, 2017); and in 

material sciences, physical properties of new materials are predicted (Tshitoyan et al., 2019). 

These examples are characterized by ML, in which well-trained algorithms engage in complex 

tasks and directly contribute to making discoveries but not only merely automating the work 

process. 

As contemporary science is usually based on a team activity (Wuchty et al., 2007), the 

integration of machine as a creative agent can influence the optimal design of work and 

organizations (King et al., 2009; Seeber et al., 2020; Yachie et al., 2017). While the interaction 

between human and machine has been studied at a micro (cognitive) level (Langley, 2000) or a 

at a macro level (Cockburn et al., 2019), the literature has been rather silent as to the role of 

machine in organization design (Orlikowski and Scott, 2008). Though a few studies described 

the patterns of collaboration (e.g., international vs. domestic collaboration) in ML-related 

projects (Hu et al., 2020; Xin et al., 2021), no previous study to the best of our knowledge has 

investigated the impact of ML on the organizational design of scientist teams. This study thus 

aims to investigate the team structure of ML-related projects and analyze the contribution of 

ML to the scientific knowledge production under different team structure. 

To this end, we draw on bibliometric analyses. Our primary interest is how computational 

science techniques are integrated into the fields of conventional domains of science ("domain 

science" hereafter). Namely, our analysis includes six domains – agriculture, biology, 

chemistry, material sciences, medicine, and physics. To highlight the role of machine, we 

exploit a comparative approach, contrasting (1) ML-related projects (combination of 
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computational and domain sciences) and (2) ML-unrelated projects (pure domain sciences). We 

collected approximately 2,500 ML-related and 22,000 ML-unrelated scholarly publications. 

With bibliometric and text analyses, we operationalized key variables of our interest. We 

investigated the quality (citation impact and novelty) of publication output produced by research 

teams with different team characteristics. Our results suggest (1) that interdisciplinary 

collaboration between domain scientists and computer scientists as well as the engagement of 

interdisciplinary individuals who have expertise in both domain and computer sciences are 

common in ML-related projects, (2) that the engagement of interdisciplinary individuals seem 

more important in achieving high impact and novel discoveries, especially when a project 

employs computational and domain approaches interdependently, and (3) that the contribution 

of ML and its implication to team structure depend on the depth of ML, in particular deep 

learning being associated with greater impact but with lower novelty. 

This paper is structured as follows. The next section reviews literature on the use of ML and on 

the organizational design of science. The following section outlines the method and data. Then, 

the results from bibliometric analyses are presented. The final section discusses the results and 

concludes. 

 

LITERATURE REVIEW 

Role of Machine in Science 

Though the use of ML in science has substantially grown in the 2010s (Cockburn et al., 2019), 

computational techniques have long been playing critical roles in science (Gibson and Ermus, 

2019). In empirically driven domains of science such as physics and biology, statistical 

approaches have been actively used (Traweek, 1988), and enhanced computational power 

contributed to the progress of these fields (Gustafsson, 2018: p.233-238). Further, data have 

been accumulated for collective use in various fields (e.g., genome data in life sciences, material 

data in materials science), and access to large-scale data facilitated data-driven approaches in 

these fields (Libbrecht and Noble, 2015). These technical bases coupled with algorithmic 

breakthrough in the 2010 have transformed ML into a practical tool (Deng et al., 2013; Yu et 

al., 2010). ML has been applied to tackle broad areas of problems from industry to academia, 

including autonomous driving, robotics, communications, manufacturing, and medical 

diagnosis (Alsamhi et al., 2019; Kunze et al., 2018; Schwarting et al., 2018; Sharp et al., 2018).  
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The technical core of ML is a model based on neural network, decision trees, and so forth 

(Winston, 1992). A model is trained by data and then applied to additional data to make 

predictions. In academic research, domain scientists exploit this prediction capability to predict 

scientific laws of their interest, such as optimal chemical reaction paths, physical properties of 

materials, and protein-protein interactions (Service, 2017; Tshitoyan et al., 2019; Zeng et al., 

2017).  

Empirical research usually involves iterated cycles of hypothesis formulation, data collection, 

and data analysis (Latour and Woolgar, 1979; Shibayama et al., 2015). Domain scientists can 

incorporate ML into different parts or stages of this process. For example, ML can be used in 

later stages – data are generated through non-computational approaches (e.g., experiment) and 

fed into ML. In this case, the output of ML may become findings reported in publications. 

Alternatively, ML can be used in earlier stages – a hypothesis is formulated based on machine 

prediction and is tested by non-computational approaches. In this case, the role of ML is more 

exploratory and its output may be less explicitly presented in publications. Finally, ML may be 

used for data collection, to automate the process of collecting, cleaning, and coding the data. In 

such cases, the use of ML improves the efficiency of scientific research but its role may be less 

apparent in publications. 

Only few studies have investigated the impact of ML on scientific knowledge production 

(Bianchini et al., 2020), but we argue that ML can bring various values depending on how it is 

incorporated into a research process. At the most primitive level, ML may make scientific 

research more efficient and productive, for example when ML is used for automation. ML is 

also expected to improve the quality of information extracted from the data. By selecting a right 

model and carefully tuning it, scientists may be able to extract more accurate or precise 

information than simpler statistical approaches can do. Finally, most fundamentally, ML may 

help domain scientists reach a discovery beyond their cognitive capacity. As a result of rapid 

progress of science, fully mastering domain knowledge has become a challenge for human 

scientists (Bloom et al., 2020). Increasing specialization of science also has made it challenging 

to integrate knowledge in multiple domains, even though such is an important route for 

scientific discoveries (Uzzi et al., 2013). With the computer processing power, ML may help 

overcome these challenges attributed to the limit of human cognition. 

 

Organization of Science and Role of Machine 
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For fulfilling these values of ML in domain science, the expertise in computational science and 

that in domain science need to be integrated. ML algorithms may be able to improve themselves 

automatically through the use of data (Mitchell, 1997), and this autonomous nature makes 

machine a creative agent. Yet, machine requires a substantial care by human scientists, who 

develop, run, and assess a model as well as interpret output generated by the model (Deng et 

al., 2013; Langley, 2000). This process requires both the knowledge of domain science and that 

of computer science. In fact, a bibliometric analysis found that the vast majority of ML-based 

research involves collaboration (Hu et al., 2020), implying the integration of two sets of 

expertise is a key to success. 

The application of ML for domain science can be considered a case of interdisciplinary research 

(NAS, 2004; Sonnenwald, 2007). Previous studies discussed various challenges associated with 

interdisciplinary research (Porac et al., 2004; Rafols et al., 2012). The studies consistently 

suggested organizational challenges for example in coordination of tasks and in communication 

between diverse scientists, as well as in trust building which is critical to share insights and 

research findings among members. In applying computational techniques into other domains, 

the same organizational challenges have been suggested (Larson and Dechurch, 2020; Rudko 

et al., 2021; Warner and Wäger, 2019).  

Scientist teams set up various organizational arrangement to overcome such challenges. One 

potential solution concerns the proximity of collocation. Previous studies evaluated the impact 

of proximity of team members on team performance in various contexts, by and large 

suggesting that proximity facilitates communication and thus performance (Hall et al., 2018). 

In the context of science, collaboration may occur in proximity (e.g., intra-organizational 

collaboration) or remotely (e.g., inter-organizational collaboration) (Hu et al., 2020; Iglic et al., 

2017). As an extreme case of proximity in science, collaboration can occur within a lab. A lab 

is an organizational unit more permanent than a project team, and it offers the organizational 

basis for scientific activities in traditional university systems (Carayol and Matt, 2004; Latour 

and Woolgar, 1979; Shibayama et al., 2015). Recent years have seen interdisciplinary labs 

being formed so that multiple disciplines can interact effectively (Bachnak and Steidley, 2002; 

Van Hecke et al., 2002). Apparently, effective and dense communication is expected among 

lab members who share the workspace on a daily basis. For example, members can monitor one 

another, which may allow a member to detect a problem that another member struggles with 

and quickly find a solution to it (Shibayama et al., 2015; Teasley et al., 2002). 
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As another route to tackle interdisciplinary research challenges, individual scientists may 

acquire expertise of multiple domains. If an individual scientist has skills both in computer 

science and in domain science, the aforementioned organizational challenges can be resolved 

within him/herself. In fact, some areas of domain science recognized the promising power of 

computational techniques and actively incorporated computational science, such as 

bioinformatics in the biology domain (Ditty et al., 2010). These domains tend to offer a 

curriculum to train for computational techniques, which systematically develops 

interdisciplinary scientists at the intersection of domain and computer sciences. This is 

becoming common, as computational techniques are increasingly available from external 

sources such as publicly shared codes and commands implemented in software, and thus, the 

skill requirement on computer science may be lowered.  

Such interdisciplinary individuals can also play a boundary spanner role, who mediates 

members of different expertise (Bruns, 2013; Fleming and Waguespack, 2007). They translate 

the languages of domain scientists and computer scientists and facilitate their integration. Thus, 

the organizational challenges in interdisciplinary research are alleviated, which helps achieve 

expected interdisciplinary output (Leahey et al., 2017). 

Among these organizational arrangements, the optimal form may depend on how computer 

science expertise is applied to domain science, or on the interdependency of the two areas of 

tasks (Benishek and Lazzara, 2019). On the one hand, task interdependency can be high if the 

output of domain science tasks is used as the input of computer science tasks, or vice versa. The 

two areas of tasks may be even repeated in an iterative way. In such a scenario with high task 

interdependency, organizational arrangement for interdisciplinary integration is expected to be 

more important. On the other hand, task interdependency can be low if the two areas of tasks 

are modularized. For example, computer scientists may apply their ML models to publicly 

available data from domain sciences. Domain scientists may use ML only for data preparation 

(cleaning, etc.) or may use established ML algorithms. In these cases, the interface between the 

two areas of tasks is minimized, and thus, the above discussed organizational arrangement 

becomes less relevant. 

In summary, we hypothesize that scientist teams with such features that help integrate computer 

expertise and domain expertise, including collaboration in proximity and interdisciplinary 

individuals, tend to produce high-quality output, and that the features are more important when 

the computer-related tasks and domain tasks are interdependent. 
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METHODS AND DATA 

Data 

To test our hypotheses, we draw on bibliometric data collected from Web of Science (WoS).1 

Our primary interest is in the integration of computational science (ML) and domain science. 

To highlight the contribution of ML, we draw on a comparative approach, contrasting (1) ML-

related projects (combination of computation and domain sciences) and (2) ML-unrelated 

projects (purely domain science). The unit of analysis is a project team, which is operationalized 

by a group of authors of a publication. 

We employ the following sampling strategy. First, we chose six domains – agriculture, biology, 

chemistry, material sciences, medicine, and physics. The selection of these domains is based on 

WoS Subject Categories (SC). We chose 20 SCs in total within these domains (see Appendix 

1). 

Second, in these domains (SCs), we aimed to choose journals that are as mono-disciplinary as 

possible for two reasons. First, this is to lower the risk of sampling ML-related projects that are 

unrelated to domain science. We assume that mono-disciplinary journals set a clear scope of 

publication, with such a risk being mitigated. Second, to clarify the impact due to the integration 

of computer science and domain science, we minimized noise stemming from 

interdisciplinarity within a domain. To these ends, we chose up to five journals in each SC that 

are associated with a single SC (not associated with any other SC). 

Third, in these journals we selected two sets of papers, ML-related and ML-unrelated. We first 

searched for ML-related papers with "machine learning", "deep learning", and "artificial 

intelligence" as search keywords, which resulted in 2,500 papers.2 The majority of these papers 

were published in the last four years (Figure 1). 

Next, we collected ML-unrelated papers that include none of the ML-related keywords. For 

clearer comparison, for each ML-related paper, we randomly selected up to 10 ML-unrelated 

 
1 To help interpret the result from the bibliometric analyses, we also interviewed two scientists employing 

both machine learning and conventional scientific approaches. 
2 We focus on papers whose document type is "Article", "Letter", or "Proceedings Paper" and whose 

language is English. 
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papers published in the same journal and in the same year. We found 22,300 ML-unrelated 

papers. In total, we sampled 25,000 papers with 10% of ML-related papers. 

 

Measures 

ML-related project. Part of the following analyses compare ML-related papers and ML-

unrelated papers. For this comparison, we prepared a dummy variable, coded 1 if a paper is 

ML-related (i.e., including "machine learning", "deep learning", "artificial intelligence") and 0 

otherwise (ML-related). 

Scientific quality. As the dependent variables of our analyses, we prepared two measures of 

scientific quality. First, we use the citation count as of 2021 to assess the impact of the findings 

reported in the paper. To mitigate the skewness, we took a natural logarithm of citation count 

(Impact). 

Second, we measure the novelty of a paper. This is because we are interested in to what extent 

ML contributes to creating new knowledge beyond human cognition. We drew on the 

recombinant novelty concept (Fleming, 2001; Uzzi et al., 2013) and followed the 

operationalization by Matsumoto et al. (2021). The method considers a paper to be novel when 

it cites a pair of references that have rarely been cited together before. For easier interpretation 

we transformed the measure into a rank measure so that its values uniformly distribute between 

0 and 1, with 0 being the least novel and 1 being the most novel (Novelty).3 

Team size. We prepared several variables concerning the structure of scientist teams. As the 

base characteristic of a team, we first measured the team size. We counted the number of authors 

of each paper (#Author), the number of organizations (university, firms, etc.) included in the 

author address (#Org), and the number of countries included in the author address (#Country). 

Form of collaboration. Second, since we are interested in the integration of computational 

expertise and conventional expertise, we investigated the forms of collaboration. To this end, 

we scrutinized the names of authors' affiliated organizations to distinguish if an organization 

has a computational background or not. Then, we consider an organization to be computational 

if the name includes "computation", "information", or "system", and we consider an 

 
3 We were unable to compute this variable for part of our sampled papers due to lack of access to 
citation network information. The regression analyses on novelty thus draws on a subset (67%) of our 
sample. 
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organization to be in a traditional domain if the name includes none of them.4 Using this 

distinction of organizations, we prepared three variables. We first measured if a team involved 

both computational and domain organizations (instead of involving only domain organizations). 

A dummy variable is coded 1 if at least one affiliated organization is computational and 0 

otherwise (Comp-Domain Collab).  To further investigate the proximity in collaborating 

parties, we examined whether a team involved computational and domain organizations inside 

the same parent organization (i.e., a computational department and a domain department in the 

same university). In such teams, a dummy variable is coded 1 and otherwise 0 (Intra-Org 

Collab). Similarly, if a team involved computational and domain organizations in two different 

organizations, another dummy variable is coded 1 and otherwise 0 (Inter-Org Collab). Note 

that one team can involve both intra-organizational collaboration and inter-organizational 

collaboration. 

Interdisciplinary individuals. Third, we measured whether an individual team member has both 

computational and domain expertise in two ways. One measure is based on organizational 

affiliation. If an individual member of a team (an author of a paper) is affiliated to both 

computational and domain organizations, we consider that the member has both computational 

and conventional expertise and plays a boundary spanner role at the individual level. A dummy 

variable is coded 1 if a team has at least one author affiliated to both types of organizations and 

0 otherwise (Multi-Affiliation). The other measure is based on previous experience of individual 

members. For feasibility, we focused on the corresponding author of each paper and tracked 

WoS Subject Categories (SCs) associated to their previous publications. We grouped SCs into 

computer-related and domain-related SCs,5 and coded a dummy variable 1 if previous paper is 

associated with both a computer-related SC and a domain-related SC, and 0 otherwise (Multi-

Expertise).6 

Interdependency of computer and domain science. ML may be used in different ways in 

domain sciences. We sampled ML-related papers7 and categorized them into two groups by 

reading the method section of the papers. The first group of papers integrates both 

 
4 In this analysis we disregard the types (universities, firms, etc.) of organizations, but such distinction is of 

interest for future research. For example, industries and universities may use ML differently. 
5 Computer-science-related SCs are all SCs including "Computer Science", "Mathematical & 

Computational Biology", and "Information Science & Library Science" 
6 Preparing this variable requires at least one previous publication. The corresponding authors of 18% 
of our sampled papers had no previous publications and are excluded from regression analyses. 
7 We used only a subset of ML-related papers for this variable because this categorization requires 
access to the full text of the papers.  
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computational approaches and domain approaches (e.g., experiment, observation), whereas the 

second group uses mainly computational approaches, typically based on secondary data.8 We 

assume that this is a critical distinction in that the former group (Computer-Domain Integrated) 

should require a greater extent of integration between computer and domain expertise compared 

with the latter group (Computation-Focused).  

Depth of ML. ML can mean various technologies. In fact, common technical keywords in our 

selected papers include, for example, "neural network", "classification", "regression", "support 

vector machine", and "random forest." Some of these have been used traditionally (e.g., 

regression analyses). To highlight the impact of machines, we attempted to differentiate the 

complexity or the depth of models on which ML is carried out. Hence, we aim to contrast "deep" 

learning (DL) and "non-deep" learning (non-DL). This is because the distinction should affect 

the computer-science expertise required in a team, and because deeper learning might provide 

new values for science beyond what traditional statistical techniques can do. Making this 

technical distinction based on text information is challenging because papers do not always 

describe the ML model in detail. For feasibility, we consider that a project involved DL if a 

paper includes "deep learning" or "neural network" in the abstract or in the keywords (DL-

related).9 

Other variables. In the regression analyses, we include publication year dummies as well as 

journal dummies. Part of the following analyses are broken down by countries and fields. As 

for countries, we distinguish seven major countries: the USA, Canada, the UK, Germany, 

France, Japan, and China. As to fields, we used the aforementioned six fields: agriculture, 

biology, chemistry, material sciences, medicine, and physics (Figure 2). Table 1 presents the 

descriptive statistics and correlation matrix of all the variables. 

 

RESULTS 

Description of Team Structure 

We first analyze whether ML-related projects exhibit different organizational features than ML-

unrelated projects.  

 
8 We also identified a few review papers that involve neither computational nor domain approaches 
and excluded them from this categorization.   
9 The use of "neural network" can be misleading as "neural network" may be shallow. 
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Team size. Figure 3 first shows the team size of ML-related and ML-unrelated projects. We 

regressed the size variables on ML-related and other control variables. The top bars indicate 

that ML-related projects involve slightly fewer authors than ML-unrelated projects (5.3 vs. 5.5, 

p<.001). This may be because ML-related projects require less physical work, and thus, fewer 

members. The second bars, however, indicate that ML-related project involve more 

organizations (3.1 vs. 3.0, p <.05) probably because the ML-related projects tend to require a 

broader set of expertise (i.e., computational and domain). Finally, the bottom bars show no 

significant difference in the number of involved countries. 

Collaboration form. Then, we analyze the collaboration forms between computational and 

conventional organizations (Figure 4). As expected, domain-computer collaboration is more 

common in ML-related projects than in ML-unrelated projects (39% vs. 15%, p<.001). 

Domain-computer collaboration is broken down into intra-organizational and inter-

organizational collaborations, both of which are more common in ML-related projects (20% vs. 

7%, p<.001 and 33% vs. 14%, p<.001).  

Interdisciplinary individuals. Finally, Figure 5 compares ML-related and unrelated projects in 

terms of individual team members having both computational and domain expertise. The figure 

indicates that ML-related projects are more likely to involve one or more individuals who are 

affiliated to domain and computer departments (21% vs. 9%, p<.001). Similarly, ML-related 

projects are more likely to engage individuals who had previous experience in computer and 

domain sciences (38% vs. 13%, p<.001). These results indicates that ML-related projects do 

incorporate combination of computational and domain expertise.  

Cross-national comparison. To investigate potential differences between countries, we present 

a breakdown by countries (Figure 6). Figure 6A indicates that the majority of ML-related papers 

are published by the USA (34%) and China (23%). Japan accounts for 4.4% of the all ML-

related papers. Comparing with ML-unrelated papers, it is clear that the USA is leading ML-

related research (the standardized ratio of ML-related to unrelated papers = 1.18). On the other 

hand, ML-related research accounts for a relatively smaller portion of entire research activities 

in Japan (ratio = 0.80) and France (ratio = 0.79). In terms of team size (Figure 6B), data suggest 

that the team size in Japan is relatively smaller than European counterparts but is comparable 

to the USA. In terms of interdisciplinary expertise (Figure 6D), Japanese scientists have lower 

levels of interdisciplinarity (i.e., more likely to specialize in either computer science or domain 

science). 
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Quality of Output from ML-related Projects 

ML-related vs. ML-unrelated projects. Next, we analyze the quality of scientific output 

produced by ML-related and unrelated projects. We predicted citation impact and novelty by 

ML-related with controlling for the team size and other variables (Table 2A). Model 1 shows a 

significantly positive coefficient of ML-related (b = .481, p <.001), suggesting that ML-related 

papers tend to receive more citations than ML-unrelated papers. On the other hand, Model 2 

finds no significant coefficient of ML-related (b = -.007, p >.1), suggesting that ML-related 

papers do not necessarily present novel discoveries. We further repeated the same set of 

analyses with a matching approach, in which ML-related papers are compared with ML-

unrelated papers published in the same journal in the same year, finding a consistent result 

(Table 2B).  

Team structure. We then examine how different collaboration forms affect the quality of 

publications from ML-related projects (Table 3A). First, Models 1-4 use citation impact as the 

dependent variable. Model 1 suggests that computer-domain collaboration is associated with 

higher citation impact (b = .112, p <.01). Breaking down such collaboration into intra-

organizational and inter-organizational ones, Model 2 finds both coefficients weakly significant 

(b = .086, p<.1 and b = .069, p<.1). The result suggests no significant difference between the 

two forms of collaboration, and thus, proximity in collaboration does not seem to play a role in 

this context. 

Model 3 further breaks down computer-domain collaboration into ones involving individuals 

affiliated to both computer and domain departments (Multi-Affiliation) and ones not involving 

such individuals (Comp-Domain Collab without Multi-Affiliation), finding that only the former 

group is associated with higher citation impact (b = .160, p <.001) but not the latter (b = .055, 

p>.1). This suggests that interdisciplinary individuals are important to achieve high citation 

impact. Similarly, Model 4 breaks down computer-domain collaboration into ones involving 

individuals having previous experience in computer and domain sciences (Multi-Expertise) and 

ones not involving such individuals (Comp-Domain Collab without Multi-Expertise). The result 

shows significantly positive coefficients for both variables (b = .119, p <.001 and b = .139, p 

<.001), suggesting that high citation impact requires either computer-domain collaboration or 

interdisciplinary individuals. 



 14 

Models 5-8 repeat the same set of analyses with novelty as the dependent variable. The result 

presents no significant pattern, except that Model 4 shows that interdisciplinary individuals 

having both computer and domain science expertise are weakly associated with higher novelty 

(b = .129, p <.1).  

These results seem to imply relatively greater importance of interdisciplinary individuals rather 

than interdisciplinary collaboration. Thus, we further test whether the role of interdisciplinary 

individuals is specific to ML-related projects. To this end, we compare the impact of Multi-

Affiliation and Multi-Expertise between ML-related and ML-unrelated projects (Table 3B). In 

all four models, we find that the coefficients are larger for ML-related projects than for ML-

unrelated projects. In particular, Model 1 shows that individuals having both computer and 

domain affiliations (Multi-Affiliation) are significantly associated with higher citation impact 

(b = .120, p <.001); and Model 4 shows that individuals having both computer and domain 

expertise (Multi-Expertise) are significantly associated with higher novelty (b = .026, p<.05).  

Interdependency of computer and domain science. Next, we test whether the role of 

interdisciplinary individuals differs due to different uses of ML. Table 4 draws on the 

subsamples of ML-related projects – computation-focused projects (Models 1, 2, 5, and 6) and 

computer-domain integrated projects (Models 3, 4, 7, and 8) – and shows that both Multi-

Affiliation and Multi-Expertise have significantly positive coefficients only in the latter group. 

This suggests that interdisciplinary individuals are particularly important when projects employ 

both computational and domain approaches interdependently. 

We also ran the same models as in Table 3A with the computation-focused and computer-

domain-integrated subsamples (Table S4) and confirmed that interdisciplinary individuals 

rather than interdisciplinary collaboration are important in the latter subsample. 

Depth of ML. Finally, we break down ML technologies. In particular, Table 5A regresses the 

publication quality on DL-related in addition to ML-related. Model 1 shows that DL-related 

papers are even more cited compared to DL-unrelated papers (b = .201, p <.001). However, 

Model 2 indicates that DL-related papers are less novel compared to DL-unrelated papers (b = 

-.054, p <.001). Thus, it appears that DL does not necessarily allow scientists to gain novel 

insights beyond human cognition. DL rather seems to be applied to an agenda that humans have 

relatively good understanding (and thus lower novelty). Our interviewee suggested that DL 

tends to provide better model performance (e.g., accuracy, precision), facilitating further uses 
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of DL models, which is consistent with the positive coefficient of DL-related on citation count 

(Model 1). 

Table 5B further investigates the contribution of interdisciplinary individuals in DL-related and 

DL-unrelated projects by distinguishing computation-focused projects and computer-domain 

integrated projects. The result shows almost no effect of interdisciplinary individuals in 

computation-focused projects (Models 1, 2, 5, and 6), as in Table 4. In contrast, in computer-

domain integrated projects, interdisciplinary individuals seem to play different roles between 

DL-related and DL-unrelated projects. In terms of citation impact, Models 3 and 4 show that 

interdisciplinary individuals are more important in DL-unrelated projects (but ML-related) than 

in DL-related projects. On the other hand, in terms of novelty, Models 5 and 6 show that 

interdisciplinary individuals are more important in DL-related projects than in DL-unrelated 

ones. A plausible interpretation is that greater novelty is rooted in inspiration from DL 

facilitated by the integration of computer and domain expertise, whereas greater citation results 

from higher model performance due to DL, which may not necessarily require the fundamental 

integration of computer and domain expertise. 

 

DISCUSSION AND CONCLUSION 

The progress of science increasingly relies on computational expertise and particularly on ML 

(Cockburn et al., 2019), and machines work alongside humans in various domains (de Cock 

Buning 2017). As the integration of machine as a creative agent in science can influence the 

optimal design of work and organizations (King et al., 2009; Seeber et al., 2020; Yachie et al., 

2017), this study investigated the team structure of ML-related projects and analyzed the 

contribution of ML to scientific knowledge production under different team structure. 

Drawing on bibliometric analyses of 25,000 scientific publications in six domains, we found 

(1) that interdisciplinary collaboration and the engagement of interdisciplinary individuals are 

common in ML-related projects, (2) that the engagement of interdisciplinary individuals is 

associated with higher impact and novelty especially when a project employs computational 

and domain approaches substantially, and (3) that the contribution of ML and its implication to 

team structure depend on the depth of ML. 

This study contributes to the literature by illustrating the role of machines in a scientist team. 

Previous literature on the use of machines has been either at a macro level (Cockburn et al., 

2019) or at a micro (cognitive) level (Langley, 2000), with the meso-level discussion in scientist 
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teams remaining to be understudied (Orlikowski and Scott, 2008). Although a few recent 

studies described the patterns of collaboration (e.g., international vs. domestic collaboration) in 

ML-related projects (Hu et al., 2020; Xin et al., 2021), our understanding has been scarce as to 

how ML affects the quality of scientific knowledge production under different organizational 

designs. Drawing on the literature of scientific collaboration and interdisciplinarity (Fleming 

and Waguespack, 2007; Latour and Woolgar, 1979; Rafols et al., 2012; Shibayama et al., 2015), 

we argue that team features that help integrate computer expertise and domain expertise are 

associated with higher output quality, and that these features are more important when the 

computer-related tasks and domain tasks are interdependent. Our empirical analyses support 

this hypothesis. 

A potential challenge in integrating computer and domain sciences is lack of incentive. While 

our analysis shows that interdisciplinarity contributes to higher impacts and novelty, it is not 

obvious whether scientists with computational expertise and those with domain expertise are 

willing to work together. In fact, our interview suggested that scientists working on ML tended 

to appreciate publications in computer science rather than publications in other fields. It is also 

suggested that domain scientists do not always appreciate research approaches based upon ML 

because it is difficult to explain how prediction is made by a model that could be considered a 

black box. It is thus critical to understand what motivates ML scientists to collaborate with 

domain scientists and what obstacles exist in their collaboration. 

It is particularly interesting to find that ML can contribute to the novelty of scientific discoveries 

with the engagement of interdisciplinary individuals. Our empirical work further suggests that 

interdisciplinary individuals are critical in delivering novel discoveries based on deeper ML 

(DL). ML can bring various values, such as efficiency of data analysis or greater precision of 

model prediction. However, supplementing humans' cognitive capacity and delivering novel 

discoveries is a fundamental benefit of machines under the burden of knowledge (Bloom et al., 

2020). Our result highlights a critical role played by interdisciplinary individuals in achieving 

novelty. Thanks to the continued advancement of computational science, more sophisticated 

and potentially more complex and deeper ML approaches are likely to become available for 

domain scientists. Our result implies that engaging interdisciplinary individuals is crucial in 

exploiting the full capacity of computational techniques. Indeed, our interviewee referred to a 

critical "liaison" role played by a scientist who studied computer science and genetics in a 

project utilizing ML for detecting cancers. Such interdisciplinary scientists may begin their 

careers either as domain scientists or as computer scientists. For example, domain sciences have 
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invested in computational techniques (e.g., bioinformatics) to systematically train 

interdisciplinary scientists (Ditty et al., 2010). Our cross-national comparison shows that 

interdisciplinary individuals are more common in some countries than others, suggesting that 

the latter countries need to further invest in training interdisciplinary scientists who can 

integrate computer and domain sciences (e.g., support for educational programs). 

Our results need to be interpreted with a few limitations. First, our bibliometric approach cannot 

fully capture how machines are used and how teams are formed. Future research should look 

into more detailed or precise information. Second, we have to be cautious about potential 

changes in the role of machines over time. The vast majority of our sampled papers were 

published in the last four years (2017-2021) because ML is a rather recent phenomenon. The 

role of machines and how it affects the team design might change in the future with the 

advancement of computational techniques. Third, our results are based on cross-sectional 

analyses, and thus, the causal mechanism behind our findings cannot be completely clear.  

 

References 

Alsamhi, S. H., Ansari, M. S., Ma, O., Almalki, F., Gupta, S. K. 2019. Tethered balloon 
technology in design solutions for rescue and relief team emergency communication 
services. Disaster Medicine and Public Health Preparedness, 13: 203-210. 

Bachnak, R., Steidley, C. 2002. An interdisciplinary laboratory for computer science and 
engineering technology. J. Comput. Sci. Coll., 17: 186–192. 

Benishek, L. E., Lazzara, E. H. 2019. Teams in a new era: Some considerations and 
implications. Frontiers in psychology, 10. 

Bianchini, S., Müller, M., Pelletier, P. 2020. Deep learning in science: arXiv. 
Bloom, N., Jones, C. I., Van Reenen, J., Webb, M. 2020. Are ideas getting harder to find? 

American Economic Review, 110: 1104-1144. 
Bruns, H. C. 2013. Working alone together: Coordination in collaboration across domains of 

expertise. The Academy of Management Journal, 56: 62-83. 
Carayol, N., Matt, M. 2004. Does research organization influence academic production? 

Laboratory level evidence from a large european university. Research Policy, 33: 1081-
1102. 

Cockburn, I. M., Henderson, R., Stern, S. 2019. The impact of artificial intelligence on 
innovation: An exploratory analysis. In Agrawal, A. K. & Gans, J. & Goldfarb, A. 
(Eds.), The economics of artificial intelligence: University of Chicago Press. 

Deng, L., Hinton, G., Kingsbury, B. 2013. New types of deep neural network learning for 
speech recognition and related applications: An overview. Paper presented at the 2013 
IEEE International Conference on Acoustics, Speech and Signal Processing. 



 18 

Ding, W. W., Levin, S. G., Stephan, P. E., Winkler, A. E. 2010. The impact of information 
technology on academic scientists' productivity and collaboration patterns. 
Management Science, 56: 1439-1461. 

Ditty, J. L., Kvaal, C. A., Goodner, B., Freyermuth, S. K., Bailey, C., Britton, R. A., Gordon, 
S. G., Heinhorst, S., Reed, K., Xu, Z., Sanders-Lorenz, E. R., Axen, S., Kim, E., Johns, 
M., Scott, K., Kerfeld, C. A. 2010. Incorporating genomics and bioinformatics across 
the life sciences curriculum. Plos Biology, 8: e1000448. 

Fleming, L. 2001. Recombinant uncertainty in technological search. Management Science, 47: 
117-132. 

Fleming, L., Waguespack, D. M. 2007. Brokerage, boundary spanning, and leadership in open 
innovation communities. Organization Science, 18: 165-180. 

Gibson, A., Ermus, C. 2019. The history of science and the science of history: Computational 
methods, algorithms, and the future of the field. Isis, 110: 555-566. 

Gustafsson, B. 2018. Scientific computing: A historical perspective. Cham, Switzerland: 
Springer. 

Hall, K. L., Vogel, A. L., Huang, G. C., Serrano, K. J., Rice, E. L., Tsakraklides, S. P., Fiore, 
S. M. 2018. The science of team science: A review of the empirical evidence and 
research gaps on collaboration in science. American Psychologist, 73: 532-548. 

Hu, H., Wang, D., Deng, S. 2020. Global collaboration in artificial intelligence: Bibliometrics 
and network analysis from 1985 to 2019. Journal of Data and Information Science, 5: 
86-115. 

Iglic, H., Doreian, P., Kronegger, L., Ferligoj, A. 2017. With whom do researchers collaborate 
and why? Scientometrics, 112: 153-174. 

King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., 
Markham, M., Pir, P., Soldatova, L. N., Sparkes, A., Whelan, K. E., Clare, A. 2009. The 
automation of science. Science, 324: 85-89. 

Kunze, L., Hawes, N., Duckett, T., Hanheide, M., Krajnìk, T. A. 2018. Artificial intelligence 
for long-term robot autonomy: A survey. IEEE Robotics and Automation Letters, 3: 
4023-4030. 

Langley, P. 2000. The computational support of scientific discovery. International Journal of 
Human-Computer Studies, 53: 393-410. 

Larson, L., Dechurch, L. 2020. Leading teams in the digital age: Four perspectives on 
technology and what they mean for leading teams. The Leadership Quarterly, 31: 
101377. 

Latour, B., Woolgar, S. 1979. Laboratory life: The construction of scientific facts. Princeton, 
NJ: Princeton University Press. 

Leahey, E., Beckman, C. M., Stanko, T. L. 2017. Prominent but less productive: The impact of 
interdisciplinarity on scientists' research. Administrative Science Quarterly, 62: 105-
139. 

Libbrecht, M. W., Noble, W. S. 2015. Machine learning applications in genetics and genomics. 
Nature Reviews Genetics, 16: 321-332. 



 19 

Matsumoto, K., Shibayama, S., Kang, B., Igami, M. 2021. Introducing a novelty indicator for 
scientific research: Validating the knowledge-based combinatorial approach. 
Scientometrics, 126: 6891–6915. 

Mitchell, T. 1997. Machine learning. New York: McGraw Hill. 
NAS. 2004. Facilitating interdisciplinary research: The National Academies Press. 
Nelson, R. R. 2004. The market economy, and the scientific commons. Research Policy, 33: 

455-471. 
Orlikowski, W. J., Scott, S. V. 2008. Sociomateriality: Challenging the separation of 

technology, work and organization. Academy of Management Annals, 2: 433-474. 
Porac, J. F., Wade, J. B., Fischer, H. M., Brown, J., Kanfer, A., Bowker, G. 2004. Human capital 

heterogeneity, collaborative relationships, and publication patterns in a 
multidisciplinary scientific alliance: A comparative case study of two scientific teams. 
Research Policy, 33: 661-678. 

Rafols, I., Leydesdorff, L., O'hare, A., Nightingale, P., Stirling, A. 2012. How journal rankings 
can suppress interdisciplinary research: A comparison between innovation studies and 
business & management. Research Policy, 41: 1262-1282. 

Rudko, I., Bashirpour Bonab, A., Bellini, F. 2021. Organizational structure and artificial 
intelligence. Modeling the intraorganizational response to the ai contingency. Journal 
of Theoretical and Applied Electronic Commerce Research, 16: 2341-2364. 

Schwarting, W., Alonso-Mora, J., Rus, D. 2018. Planning and decision-making for autonomous 
vehicles. Annual Review of Control, Robotics, and Autonomous Systems, 1: 187-210. 

Seeber, I., Bittner, E., Briggs, R. O., De Vreede, T., De Vreede, G.-J., Elkins, A., Maier, R., 
Merz, A. B., Oeste-Reiß, S., Randrup, N., Schwabe, G., Söllner, M. 2020. Machines as 
teammates: A research agenda on ai in team collaboration. Information & 
Management, 57: 103174. 

Service, R. F. 2017. Ai in action: Neural networks learn the art of chemical synthesis. Science, 
357: 27-27. 

Sharp, M., Ak, R., Hedberg, T., Jr. 2018. A survey of the advancing use and development of 
machine learning in smart manufacturing. Journal of Manufacturing Systems, 48 Pt C: 
10.1016/j.jmsy.2018.1002.1004. 

Shibayama, S., Baba, Y., Walsh, J. P. 2015. Organizational design of university laboratories: 
Task allocation and lab performance in japanese bioscience laboratories. Research 
Policy, 44: 610-622. 

Sonnenwald, D. H. 2007. Scientific collaboration. Annual Review of Information Science and 
Technology, 41: 643-681. 

Stephan, P. E. 1996. The economics of science. Journal of Economic Literature, 34: 1199-
1235. 

Stephan, P. E. 2012. How economics shapes science. Cambridge, MA: Harvard University 
Press. 

Teasley, S. D., Covi, L. A., Krishnan, M. S., Olson, J. S. 2002. Rapid software development 
through team collocation. Ieee Transactions on Software Engineering, 28: 671-683. 

Traweek, S. 1988. Beamtimes and lifetimes: The world of high energy physicists. Cambridge, 
MA: Harvard University Press. 



 20 

Tshitoyan, V., Dagdelen, J., Weston, L., Dunn, A., Rong, Z., Kononova, O., Persson, K. A., 
Ceder, G., Jain, A. 2019. Unsupervised word embeddings capture latent knowledge 
from materials science literature. Nature, 571: 95-98. 

Uzzi, B., Mukherjee, S., Stringer, M., Jones, B. 2013. Atypical combinations and scientific 
impact. Science, 342: 468-472. 

Van Hecke, G. R., Karukstis, K. K., Haskell, R. C., Mcfadden, C. S., Wettack, F. S. 2002. An 
integration of chemistry, biology, and physics: The interdisciplinary laboratory. Journal 
of Chemical Education, 79: 837. 

Warner, K. S. R., Wäger, M. 2019. Building dynamic capabilities for digital transformation: 
An ongoing process of strategic renewal. Long Range Planning, 52: 326-349. 

Winston, P. H. 1992. Artificial intelligence (3rd ed.): Pearson. 
Wuchty, S., Jones, B. F., Uzzi, B. 2007. The increasing dominance of teams in production of 

knowledge. Science, 316: 1036-1039. 
Xin, Y., Man, W., Yi, Z. 2021. The development trend of artificial intelligence in medical: A 

patentometric analysis. Artificial Intelligence in the Life Sciences, 1: 100006. 
Yachie, N., et al. 2017. Robotic crowd biology with maholo labdroids. Nature Biotechnology, 

35: 310-312. 
Yu, D., Deng, L., Dahl, G. E. 2010. Roles of pre-training and fine-tuning in context-dependent 

dbn-hmms for real-world speech recognition. 
Zeng, X. X., Liao, Y. L., Liu, Y. S., Zou, Q. 2017. Prediction and validation of disease genes 

using hetesim scores. Ieee-Acm Transactions on Computational Biology and 
Bioinformatics, 14: 687-695. 



 21 

FIGURES AND TABLES 

 

Figure 1 Publication year of ML-related papers 
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Figure 2 Distribution across disciplines 
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Figure 3 Team Size 

 

Notes: Team size is estimated by ordinary least squares (OLS) regressions controlling for publication years and 
journals (see Table S1). The error bars indicate one standard error. Two-tailed test: *p<0.05, ***p<0.001. 
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Figure 4 Collaboration Form 

 

Notes: Collaboration forms are estimated by logit regressions controlling for publication years and journals (see 
Table S2). The error bars indicate one standard error. Two-tailed test: ***p<0.001. 
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Figure 5 Interdisciplinary Expertise 

 

Notes: Collaboration forms are estimated by logit regressions controlling for publication years and journals (see 
Table S3). The error bars indicate one standard error. Two-tailed test: ***p<0.001. 
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Figure 6 Cross-National Comparison 

(A) Proportion of country 
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Table 1  Descriptive Statistics and Correlation Matrix 

  Variables Mean S.D. Min Max 1 2 3 4 5 6 7 8 9  10 11 

1 Impact 1.010 1.180 .000 8.220                       

2 Novelty .500 .290 .000 1.000 -.053                     

3 Ln(#Author) 1.710 .680 .000 5.200 .078 .071                   

4 Ln(#Org) 1.100 .730 .000 5.180 .071 .049 .668                 

5 Ln(#Country) .300 .460 .000 3.300 .095 .008 .327 .515               

6 Comp-Domain Collab .170 .380 .000 1.000 .070 .011 .105 .256 .152             

7 Intra-Org Collab .080 .280 .000 1.000 .064 .023 .103 .212 .045 .660           

8 Inter-Org Collab .150 .360 .000 1.000 .064 .010 .124 .274 .193 .932 .515         

9 Multi-Affiliation .100 .300 .000 1.000 .071 .019 .075 .226 .131 .727 .582 .684       

10 Multi-Expertise .150 .360 .000 1.000 .017 -.018 -.131 -.044 .015 .227 .142 .210 .161     

11 ML-related .100 .300 .000 1.000 .095 .005 -.030 .009 -.010 .192 .134 .171 .130 .230   

12 DL-related .040 .200 .000 1.000 .046 -.020 -.030 -.020 -.014 .130 .082 .117 .086 .156 .601 

 

Notes: N = 24,641 (except for N = 16,440 for Novelty).  

 



 28 

Table 2  Prediction of Publication Quality: ML-related vs. ML-unrelated 
Projects 

(A) Base Model 

--------------------------------------------------------------------- 

                             Impact                Novelty             

                            -------------------   ------------------- 

                             Model 1               Model 2             

--------------------------------------------------------------------- 

ln(#Author)                     .172***  (.010)       .019***  (.005) 

ln(#Org)                        .015     (.009)       .006     (.004) 

ln(#Country)                    .081***  (.011)      -.005     (.005) 

ML-related                      .481***  (.014)      -.007     (.006) 

Year dummies                     Yes                   Yes            

Journal dummies                  Yes                   Yes            

--------------------------------------------------------------------- 

F stat                       504.299***             37.187***         

R2_adjusted                     .660                  .172            

N                              24641                 16433            

--------------------------------------------------------------------- 
Notes: Unstandardized coefficients (standard errors in parentheses). Two-tailed test: ***p<0.001. Ordinary least 
squares (OLS). 

 

(B) Matched Sample 

---------------------------------------------------------------------- 

                             Impact                Novelty             

                            -------------------   -------------------- 

                             Model 1               Model 2             

---------------------------------------------------------------------- 

ln(#Author)                     .162***  (.009)       .018***  (.005) 

ln(#Org)                        .013     (.009)       .009*    (.004) 

ln(#Country)                    .067***  (.011)      -.006     (.005) 

ML-related                      .496***  (.016)      -.001     (.008) 

---------------------------------------------------------------------- 

F stat                       242.001***            155.908***         

R2_adjusted                     .828                  .797            

N                              24405                 15938            

---------------------------------------------------------------------- 

Notes: Unstandardized coefficients (standard errors in parentheses). Two-tailed test: ***p<0.001. Ordinary least 
squares (OLS). ML-related papers are paired with ML-unrelated papers published in the same journal in the 
same year.  
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Table 3  Prediction of Publication Quality by Team Structure 

(A) ML-related Projects Only 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

                             Impact                                                                                  Novelty             

                            -------------------------------------------------------------------------------------   ------------------------------------------------------------------------------------- 

                             Model 1               Model 2               Model 3               Model 4               Model 5               Model 6               Model 7               Model 8            

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

ln(#Author)                     .111**   (.037)       .111**   (.037)       .111**   (.037)       .106*    (.042)      -.015     (.013)      -.015     (.013)      -.013     (.013)      -.013     (.015) 

ln(#Org)                        .006     (.037)       .002     (.038)       .010     (.037)       .053     (.039)       .032*    (.013)       .030*    (.013)       .026*    (.013)       .014     (.013) 

ln(#Country)                    .144***  (.044)       .149***  (.044)       .134**   (.044)       .100*    (.048)      -.003     (.015)      -.000     (.015)      -.003     (.015)       .000     (.016) 

 

Comp-Domain Collab              .112**   (.037)                                                                        -.000     (.013)                                                   

 

Intra-org Collab                                      .086+    (.048)                                                                         .016     (.016)                                             

Inter-org Collab                                      .069+    (.041)                                                                        -.008     (.014)                                             

 

Multi-Affiliation                                                           .160***  (.046)                                                                         .018     (.016)                       

Comp-Domain Collab 

  without Multi-Affiliation                                                 .055     (.046)                                                                        -.018     (.016)                       

 

Multi-Expertise                                                                                   .119**   (.044)                                                                         .029+    (.015) 

Comp-Domain Collab 

  without Multi-Expertise                                                                         .139**   (.053)                                                                        -.012     (.018) 

 

Year dummies                     Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes            

Journal dummies                  Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes            

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

F stat                        42.830***             42.366***             42.394***             31.752***              5.987***              5.935***              5.713***              5.254***         

R2_adjusted                     .611                  .611                  .606                  .587                  .180                  .180                  .172                  .185            

N                               2530                  2530                  2505                  2034                  2137                  2137                  2117                  1724            

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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(B) ML-related vs. ML-unrelated Projects 
--------------------------------------------------------------------------------------------------------------------------- 

                                       Impact                                      Novelty             

                                      -----------------------------------------   ----------------------------------------- 

                                       Model 1               Model 2               Model 3               Model 4            

--------------------------------------------------------------------------------------------------------------------------- 

ln(#Author)                               .171***  (.010)       .161***  (.011)       .020***  (.005)       .024***  (.005) 

ln(#Org)                                  .009     (.009)       .013     (.010)       .005     (.004)       .002     (.005) 

ln(#Country)                              .081***  (.011)       .070***  (.012)      -.004     (.005)      -.000     (.006) 

ML-related                                .460***  (.016)       .464***  (.020)      -.010     (.007)      -.013     (.009) 

 

Multi-Affiliation (ML-unrelated)          .006     (.017)                             .003     (.008)                       

Multi-Affiliation (ML-related)            .120***  (.033)                             .016     (.014)                       

 

Multi-Expertise (ML-unrelated)                                 -.006     (.016)                            -.006     (.008) 

Multi-Expertise (ML-related)                                    .005     (.031)                             .026*    (.013) 

 

Year dummies                               Yes                   Yes                   Yes                   Yes            

Journal dummies                            Yes                   Yes                   Yes                   Yes            

--------------------------------------------------------------------------------------------------------------------------- 

F stat                                 491.678***            416.598***             34.573***             30.836***         

R2_adjusted                               .654                  .665                  .163                  .175            

N                                        24392                 20095                 16250                 13386            

--------------------------------------------------------------------------------------------------------------------------- 

Notes: Unstandardized coefficients (standard errors in parentheses). Two-tailed test: †p<0.1, *p<0.05, **p<0.01, ***p<0.001. Ordinary least squares (OLS). (B) To compare the 
impact of Multi-Affiliation and Multi-Expertise between ML-related and ML-unrelated projects, we interacted Multi-Affiliation (-Expertise) with ML-related. For example, 
Multi-Affiliation (ML-unrelated) is 1 if Multi-Affiliation = 1 and ML-related = 0. 
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Table 4  Use of Machine: Computation-focused vs. Computer-Domain Integrated Projects (ML-related projects only) 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

                             Impact                                                                                  Novelty 

                            -------------------------------------------------------------------------------------   ------------------------------------------------------------------------------------- 

                             Computation-focused                         Computer-Domain Integrated                  Computation-focused                         Computer-Domain Integrated 

                            -----------------------------------------   -----------------------------------------   -----------------------------------------   ----------------------------------------- 

                             Model 1               Model 2               Model 3               Model 4               Model 5               Model 6               Model 7               Model 8 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

ln(#Author)                     .004     (.082)       .014     (.098)       .105     (.071)       .110     (.080)      -.017     (.030)      -.018     (.037)      -.011     (.023)      -.003     (.026) 

ln(#Org)                       -.010     (.084)       .046     (.091)      -.020     (.068)       .038     (.073)       .001     (.031)      -.015     (.033)      -.034     (.022)      -.026     (.024) 

ln(#Country)                    .152     (.095)       .157     (.107)       .172*    (.078)       .114     (.084)       .017     (.033)       .037     (.037)       .049+    (.025)       .049+    (.027) 

 

Multi-Affiliation               .080     (.098)                             .182*    (.074)                             .037     (.036)                             .055*    (.024)                       

 

Multi-Expertise                                       .006     (.089)                             .166*    (.074)                            -.014     (.032)                             .064**   (.024) 

 

Year dummies                     Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes            

Journal dummies                  Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes            

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

F stat                        19.466***             11.424***             21.710***             18.771***              2.909***              2.798***              3.401***              3.204***         

R2_adjusted                     .611                  .533                  .665                  .662                  .161                  .189                  .202                  .213            

N                                613                   476                   751                   646                   487                   380                   664                   572            

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Notes: Unstandardized coefficients (standard errors in parentheses). Two-tailed test: †p<0.1, *p<0.05, **p<0.01, ***p<0.001. Ordinary least squares (OLS). 
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Table 5  ML Technologies 
 
(A) Base model 
--------------------------------------------------------------------- 

                             Impact                Novelty             

                            -------------------   ------------------- 

                             Model 1               Model 2            

--------------------------------------------------------------------- 

ln(#Author)                     .171***  (.010)       .019***  (.005) 

ln(#Org)                        .016+    (.009)       .006     (.004) 

ln(#Country)                    .080***  (.011)      -.005     (.005) 

ML-related                      .404***  (.018)       .014+    (.008) 

DL-related                      .201***  (.028)      -.054***  (.012) 

Year dummies                     Yes                   Yes            

Journal dummies                  Yes                   Yes            

--------------------------------------------------------------------- 

F stat                       500.598***             37.061***         

R2_adjusted                     .661                  .173            

N                              24641                 16433            

--------------------------------------------------------------------- 
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(B) Interdisciplinary Expertise (ML-related projects only) 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

                                       Impact                                                                                  Novelty 

                                      -------------------------------------------------------------------------------------   ------------------------------------------------------------------------------------- 

                                       Computation-focused                         Computer-Domain Integrated                  Computation-focused                         Computer-Domain Integrated 

                                      -----------------------------------------   -----------------------------------------   -----------------------------------------   ----------------------------------------- 

                                       Model 1               Model 2               Model 3               Model 4               Model 5               Model 6               Model 7               Model 8      

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

ln(#Author)                              -.018     (.081)      -.003     (.097)       .106     (.071)       .104     (.080)      -.014     (.031)      -.013     (.037)      -.013     (.023)       .000     (.026) 

ln(#Org)                                 -.004     (.083)       .037     (.090)      -.017     (.068)       .044     (.073)       .001     (.030)      -.014     (.033)      -.036     (.022)      -.029     (.023) 

ln(#Country)                              .164+    (.094)       .174+    (.105)       .173*    (.078)       .112     (.084)       .015     (.033)       .034     (.037)       .048+    (.025)       .047+    (.027) 

DL-related                                .235**   (.079)       .198+    (.109)       .082     (.084)       .106     (.098)      -.022     (.029)      -.026     (.040)      -.056*    (.027)      -.072*    (.032) 

 

Multi-Affiliation (DL-unrelated)         -.018     (.137)                             .193*    (.085)                             .098+    (.052)                             .042     (.027)                       

Multi-Affiliation (DL-related)            .111     (.124)                             .131     (.135)                             .001     (.046)                             .102*    (.044)                       

 

Multi-Expertise (DL-unrelated)                                 -.137     (.125)                             .212*    (.086)                             .005     (.047)                             .040     (.028) 

Multi-Expertise (DL-related)                                    .100     (.113)                             .047     (.133)                            -.026     (.040)                             .125**   (.043) 

 

Year dummies                               Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes            

Journal dummies                            Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes                   Yes            

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

F stat                                  19.378***             11.643***             21.104***             18.258***              2.896***              2.727***              3.377***              3.207***         

R2_adjusted                               .619                  .548                  .665                  .661                  .166                  .189                  .205                  .218            

N                                          613                   476                   751                   646                   487                   380                   664                   572            

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Notes: Unstandardized coefficients (standard errors in parentheses). Two-tailed test: †p<0.1, *p<0.05, **p<0.01, ***p<0.001. Ordinary least squares (OLS). 
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Appendix 1 Selection of Fields and Journals 

Field Subject category Journal 1 Journal 2 Journal 3 Journal 4 Journal 5 
Agriculture Food Science & Technology Foods LWT Food Science and 

Technology 
Food Research International International Journal of Food 

Science and Technology 
Food Control 

Plant Sciences Frontiers in Plant Science Plants Basel New Phytologist Plant Disease Journal of Experimental Botany 
Biology Biochemistry & Molecular 

Biology 
Biomolecules Journal of Biological Chemistry Nucleic Acids Research FEBS Journal Metabolites 

Neurosciences Frontiers in Neuroscience Brain Sciences Journal of Neuroscience Journal of Alzheimers Disease Neuroscience 
Biotechnology & Applied 
Microbiology 

Applied Microbiology and 
Biotechnology 

Applied and Environmental 
Microbiology 

Journal of Applied Microbiology Biotechnology and 
Bioengineering 

Nature Biotechnology 

Cell Biology Cells Cell Reports Cell Death & Disease Oxidative Medicine and Cellular 
Longevity 

Journal of Cell Science 

Biology ELife Journal of Experimental Biology Biology-Basel  Saudi Journal of Biological 
Sciences  

Philosophical Transactions of 
the Royal Society B-Biological 
Sciences 

Immunology Frontiers in Immunology Journal of Immunology Journal of Clinical Immunology Cellular Molecular Immunology Nature Immunology 
Chemistry Chemistry, Physical Catalysts ACS Catalysis Colloids and Surfaces A 

Physicochemical and 
Engineering Aspects 

Journal of Colloid and Interface 
Science 

Journal of Physical Chemistry B 

Chemistry, Multidisciplinary RSC Advances Angewandte Chemie 
International Edition 

ASC Omega Chemical Communications Journal of The American 
Chemical Society  

Chemistry, Organic Organic Letters Journal of Organic Chemistry Organic Biomolecular Chemistry  European Journal of Organic 
Chemistry 

Tetrahedron Letters 

Material Sciences Materials Science, 
Multidisciplinary 

Materials Journal of Materials Science  Materials Chemistry and Physics Materials Today 
Communications  

Materials Design 

Medicine Pharmacology & Pharmacy Frontiers in Pharmacology European Review for Medical 
and Pharmacological Sciences  

Pharmaceutics International Journal of 
Pharmaceutics 

Clinical Pharmacology 
Therapeutics 

Surgery British Journal of Surgery Journal of The American College 
of Surgeons 

Surgical Endoscopy and Other 
Interventional Techniques 

Obesity Surgery Plastic and Reconstructive 
Surgery 

Oncology Journal of Clinical Oncology Cancers Annals of Oncology  Frontiers in Oncology Cancer Research 
Clinical Neurology Neurology Movement Disorders Journal of Neurology Parkinsonism Related Disorders Multiple Sclerosis and Related 

Disorders 
Medicine, General & Internal Journal of Clinical Medicine BMJ British Medical Journal  BMJ Open  Jama Journal of the American 

Medical Association 
New England Journal of 
Medicine 

Physics Physics, Applied Journal of Applied Physics Applied Physics Letters Journal of Physics D Applied 
Physics 

Physical Review Applied Applied Physics Express 

Physics, Condensed Matter Journal of Physics Condensed 
Matter 

Annual Review of Condensed 
Matter Physics 

Solid State Physics Advances in Physics 
 

Physics, Multidisciplinary Physical Review Letters Entropy Physica A Statistical Mechanics 
and Its Applications 

European Physical Journal Plus Physica Scripta  

Note. In each SC, we selected up to five journals that are associated with only a single SC. We further selected only Tier-1 and Tier-2 journals in the WoS journal 
ranking. In one SC (Physics, Condensed Matter), we found only four journals that satisfy the conditions. Thus, we selected 99 journals in total. 
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